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Abstract

We discuss integrability of normal field equations of arbitrarily parametrized
Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented
as well as the Bäcklund transformation for the normal field equations in an
arbitrarily chosen surface parametrization.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.40.Hw

1. Introduction

In 1879 Luigi Bianchi discovered a remarkable transformation (called the ‘complementary
transformation’) which nowadays can be interpreted as the first step towards the Bäcklund
transformation of the sine-Gordon equation [1]. The complementary transformations have
been further extended by Albert Victor Bäcklund [2].

In his paper Bäcklund used the Monge parametrization of pseudospherical surfaces, i.e.
he represented them in the form z = z(x, y). The original Bianchi construction was a purely
geometrical one. In 1883 Gaston Darboux gave an analytic formulation of the complementary
transformations using asymptotic coordinates on pseudospherical surfaces [3]. We recall
that any hyperbolic surface (one of negative Gaussian curvature) can always be equipped
with asymptotic coordinates, i.e. almost unique coordinates for which second fundamental is
off-diagonal.

Finally in 1885 Bianchi following Darboux also used asymptotic coordinates to give an
analytic formulation of Bäcklund transformations [4].

Asymptotic coordinates are well suited to problems of pseudospherical geometry. Alfred
Enneper was the first to note that the Gauss–Mainardi–Codazzi (GMC) equations for
pseudospherical equations in asymptotic coordinates (u, v) reduce to a single equation [5]

φ,uv = sin φ
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called today the sine-Gordon equation (as usual subscripts preceded by comma denote partial
differentiation with respect to indicated variables).

On the other hand in many places in the past and in modern times one encounters the
equations

�n,uv = f �n �n · �n = 1. (1)

Here and in the following a vector denotes a function into three-dimensional real vector space
V 3. Moreover, for given (u, v) we interpret V 3 as tangent space either of Euclidean space TpE

3

or of Minkowski space TpM
3 where p(u,v) denotes a point on a regular surface in either E

3 or
M

3. Hence vector space is equipped with the inner product �A · �B := A1B1 + ε(A2B2 + A3B3)

where ε = 1 in the case of E
3 and ε = −1 in the case of M

3.
The unit normal field of any pseudospherical surface in E

3 satisfies equations (1) and it
follows from Bianchi’s formalism developed in [6]. For a modern treatment of the subject see
the monograph [7]. Nowadays equations (1) are identified as the hyperbolic chiral O3 model
(nonlinear σ -model) [8, 9]. For particular cases of σ -models see e.g. [10–12].

The case of spherical surfaces governed by the sinh-Gordon equation (or elliptic
nonlinear σ -model) was treated separately in the isothermally conjugate parametrization (i.e.
parametrization in which second fundamental form is conformal) [13].

Again it was Bianchi who incorporated into the ‘integrable’ scheme the class of surfaces
whose Gauss curvature K in asymptotic coordinates u, v is of the form

K = − 1

[U(u) + V (v)]2

(U and V are arbitrary real functions) and simultaneously derived the Bäcklund transformation
for the related system

�N,uv = f �N �N · �N = U(u) + V (v), (2)

see [6, 14]. After Byushgens [20] we refer to these surfaces as Bianchi surfaces. For a modern
treatment of Bianchi surfaces as soliton surfaces see [15, 16, 35].

Apart from being the (non-isospectral) sigma model [16], the system (2) is equivalent
to the hyperbolic counterpart of the famous Ernst equation of general relativity [18]. For its
elliptic version, i.e. the original Ernst equation, see [17].

What is striking in above remarks is that although the objects under consideration are
purely geometric (surfaces, rectilinear congruences, etc) and most of the constructions are
of a geometric nature (see e.g. Finikov’s monograph [19]), whenever integrable phenomena
(Bäcklund transformations, permutability theorems, etc) are discussed, the authors always
confine themselves to particular parametrization of the surface.

Interestingly enough both at the beginning of the 20th century [20] and in the modern
theory of integrable systems [21] a purely geometric characterization of Bianchi surfaces and
their spherical counterparts (from now on both are called Bianchi surfaces) was known and
yet their transformations were always performed either in asymptotic parametrization or in
isothermally conjugate parametrization of the surfaces respectively.

Moreover, the contemporary theory of integrable geometries seems to be parametrization
‘addicted’ even more strongly. Options to free oneself of coordinates a posteriori by using
exterior differential systems or just by not confining oneself to particular parametrization from
the outset are rarely met when integrability of the geometries is considered. However, the
Bianchi surfaces are one of a few exceptions to this rule. First, the Bianchi system (2) is
equivalent to (hyperbolic) the Ernst equation (see e.g. [21]). Then for the Ernst equation the
constant coefficient ideal (cc ideal) is known and the Darboux–Bäcklund transformation can
be written down in terms of differential forms [22] (for cc ideals see e.g. the monograph [7]).
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Second, Darboux–Bäcklund transformations for the Gauss–Mainardi–Codazzi equations of
Bianchi surfaces without specifying the parametrization have been discussed in [23].

The ‘addiction’ to surface parametrization is especially visible in the so-called difference
(integrable) geometry [24–26] where discretizations of particular nets have been considered
so far.

The aim of the paper is to present the Bäcklund transformation for a normal field of
Bianchi surfaces in arbitrary parametrization. As we will see, the starting point is Moutard-
type transformations [27] for self-adjoint second-order two-dimensional differential equations,
the transformations which are also well understood in the discrete case [28–31].

In our opinion the results presented here constitute a step towards the integrable
discretization of the elliptic Ernst equation. Indeed, it was the original motivation to undertake
this research.

The essence of the work can be explained in a few sentences. Namely, we start from the
point of view on Bianchi surfaces prompted by Tafel [21].

Proposition 1. Let a regular and oriented surface of a non-zero Gauss curvature K and
unit normal field �n0, be given. The surface is a Bianchi surface (in the extended sense) iff the
normal vector field

�N := 1
4
√|K| �n0 (3)

satisfies

∗d ∗ d �N = f̃ �N ∗ d ∗ d( �N · �N ) = 0 (4)

where f̃ is a scalar function treated as an additional dependent variable, by ∗ we denote
Hodge dualization with respect to the second fundamental form of the surface and *d*d is
nothing but the Laplace–Beltrami operator with respect to the second fundamental form of the
surface.

Then we construct the Bäcklund transformations for the field �N in arbitrarily chosen
parametrization of the Bianchi surface.

We start the paper by recalling in section 2 Lelieuvre representation of the surface
[32–34]. Since Lelieuvre representation leads to a general self-adjoint second-order
differential equation, we briefly discuss extended Moutard transformation for such equations
in section 3. The extended Moutard transformation gives through Lelieuvre formulae to
transformation of surfaces and in section 4 we discuss the constraint, which imposed on
the transformation, guarantees that both a surface and its transform are Bianchi surfaces.
Finally (after some useful definitions in section 5), we show that for any Bianchi surface such
transformations exist, i.e. we construct in section 6 Bäcklund transformations for Bianchi
surfaces.

2. Lelieuvre formulae

We are considering the C2 vector-valued function �N : R
2 ⊃ D � (x, y) �→ Tp(x,y)E

3

(Tp(x,y)M
3) that obeys

(a �N,x + c �N,y ),x + (b �N,y + c �N,x) = f �N. (5)

Cross multiplication by �N yields

[(a �N,x + c �N,y) × �N ],x + [(b �N,y + c �N,x) × �N ],y = 0

3
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so there exists a ‘potential’ �r such that

�r,x = (b �N,y + c �N,x) × �N �r,y = �N × (a �N,x + c �N,y). (6)

We interpret the ‘potential’ �r as a position vector of a surface. Then �N is a vector field normal
to that surface, while its Gauss curvature is given by

K = 1

( �N · �N)2(ab − c2)
(7)

and, finally, the second fundamental form of the surface is

II = 1√
�K

Vol(�n0; �n0,x; �n0,y)(b dx2 + a dy2 − 2c dx dy) (8)

where �n0 denotes the unit normal field and Vol is the volume form of the space.

3. Extended Moutard transformation

The classical Moutard transformation [27] can be extended so that it can act on a general
self-adjoint second-order differential operator in two independent variables [30]. Namely, the
map ψ �→ ψ ′ given by[

(θψ ′),x
(θψ ′),y

]
= θ2

[
c b

−a −c

] [(
ψ

θ

)
,x(

ψ

θ

)
,y

]
(9)

(classical Moutard transformation corresponds to the choice a = 0 = b and c = 1) is the map
from solution space of the equation

Lψ = 0 L := a∂2
x + b∂2

y + 2c∂x∂y + (a,x + c,y)∂x + (b,y + c,x)∂y − f (10)

to solution space of the equation

L′ψ ′ = 0 L′ := a′∂2
x + b′∂2

y + 2c′∂x∂y + (a′,x + c′,y)∂x + (c′,x + b′,y)∂y − f ′ (11)

provided that θ is an arbitrary fixed solution of equation (10). Additionally, we assume that
functions a, b, c are of class C1 and both functions

� := ab − c2 (12)

and function θ obey conditions � 
= 0; θ 
= 0 everywhere. The coefficients of (11) are related
to coefficients of (10) by

a′ = −a

�
, b′ = −b

�
, c′ = −c

�
,

f ′ =
{

−
[

a

�

1

θ
,x +

c

�

1

θ
,y

]
,x −

[
b

�

1

θ
,y +

c

�

1

θ
,x

]
,y

}
θ.

(13)

An elementary observation is

a′b′ − c′2 = 1

ab − c2
. (14)

So we have

�′ = 1

�

and as a result also
1√|�′| (a

′, b′, c′) = − 1√|�| (a, b, c). (15)

4
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4. Bianchi surfaces from the extended Moutard transformation

In this section we derive basic formulae defining Bianchi surfaces. We apply the Moutard
transformation to the vector-valued function �N defined in the previous section and obeying
the self-adjoint equation (cf (10))

(a �N,x + c �N,y ),x + (b �N,y + c �N,x) = f �N. (16)

From the system (9) we get

(θ �N ′),x = θ2

[
c

( �N
θ

)
,x + b

( �N
θ

)
,y

]

(θ �N ′),y = −θ2

[
a

( �N
θ

)
,x + c

( �N
θ

)
,y

]
.

(17)

We define quantities

p := �N · �N ′, r := �N · �N, r ′ := �N ′ · �N ′ (18)

so in our notation the Gauss curvature (7) (see definition (12)) is

K = 1

r2�
. (19)

From the equations obtained by scalar multiplication of equations (17) by �N and �N ′ one can
infer

1

2
r ′,x − �

1

2
r,x − cp,x − bp,y +

θ,x

θ
(r ′ + r�) = 0

1

2
r ′,y − �

1

2
r,y + ap,x + cp,y +

θ,y

θ
(r ′ + r�) = 0.

(20)

The equation defining Bianchi rectilinear congruences and hence Bianchi surfaces themselves
as the corresponding focal surfaces of Bianchi rectilinear congruences (see [19, 35]) is

r ′ + r� = 0

or in virtue of (14)

r ′√|�′| + εr
√

|�| = 0 (21)

where ε := sgn(ab − c2). Note that in the elliptic Euclidean case one has to complexify at
least one of the fields �N and �N ′ in order to satisfy constraint (21). Equation (21) gives in turn

K ′ = K

so in corresponding points the Gauss curvature K of the surface is equal to the Gauss curvature
K ′ of a transform of the surface. In the presence of constraint (21) formulae (20) take the form

ε(r
√

|�|),x +
c√|�|p,x +

b√|�|p,y = 0

ε(r
√

|�|),y − a√|�|p,x − c√|�|p,y = 0.

(22)

On eliminating the function p and using r
√

ε� = ±1√
εK

we obtain the equation[
∂

∂x

(
a√|�|

∂

∂x
+

c√|�|
∂

∂y

)
+

∂

∂y

(
c√|�|

∂

∂x
+

b√|�|
∂

∂y

)]
1√|K| = 0 (23)

which characterizes, together with equation (16), Bianchi surfaces.
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One can rewrite the results of our considerations in parametrization-independent language.
Let �n0 denote unit normal field to the Bianchi surface. Define another normal field

�N := 1
4
√|K| �n0

where K is the Gauss curvature of our surface. By ∗ we denote Hodge dualization with respect
to the second fundamental form (8). Equation (23) becomes

∗d ∗ d( �N · �N ) = 0

while equation (16) rewritten in terms of the vector field N takes the form

∗d ∗ d �N = f̃ �N
where f̃ = f/

√|�|. We come to proposition 1.

5. Orthonormal frame and rotation coefficients

We associate with the surface an orthonormal frame

(�n0, �n1, �n2)

where �n0 is the unit vector field normal to the surface so

�n0 :=
�N√
r
.

We confine ourselves in this paper to the case �n0 · �n0 = 1, �n1 · �n1 = ε, �n2 · �n2 = ε in the domain
(in the case of the Minkowski space the normal vector field �n0 is a spatial one everywhere).

The motion of the frame is described by the formulae

�nA,x = pA
B �nB �nA,y = qA

B �nB, A,B = 0, 1, 2, (24)

where the summation convention holds. Since the frame is orthonormal, matrices pA
B and

qA
B are either so(3) (ε = 1) or so(1, 2) (ε = −1) valued, and their entries are called rotation

coefficients.
The compatibility conditions for the system (24) read(

pA
C
)
,y + pA

BqB
C = (

qA
C
)
,x + qA

BpB
C. (25)

Note that the rotation coefficients satisfy also the equations[
r
(
ap0

ν + cq0
ν
)]

,x +
[
r
(
cp0

ν + bq0
ν
)]

,y

+r
[
ap0

BpB
ν + bq0

BqB
ν + c

(
p0

BqB
ν + q0

BpB
ν
)] = 0

[(a(
√

r),x + c(
√

r),y),x + (c(
√

r),x + b(
√

r),y),y]/
√

r

+ ap0
BpB

0 + bq0
BqB

0 + c
(
p0

BqB
0 + q0

BpB
0) = f (26)

as a consequence of the fact that the field �n0 is proportional to �N that satisfies equation (16).

6. Bäcklund transformation

We decompose the Moutard transform �N ′ of �N in the orthonormal basis we described in the
previous section

θ �N ′ = xA�nA (27)

6
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and substitute into the extended Moutard transformation[
(θ �N ′),x
(θ �N ′),y

]
= θ2

[
c b

−a −c

] [( �N
θ

)
,x( �N

θ

)
,y

]
. (28)

Taking into account that due to (27) the function θ can be given in terms of functions x0, r

and p, namely

θ = x0

√
r

p

we obtain that coefficients xA satisfies the linear system

x0,x = p2

p2 + r2�

{[(
r

p
c − 1

)
pμ

0 +
r

p
bqμ

0

]
xμ +

r

p2

[(
c +

r

p
�

)
p,x + bp,y

]
x0

}

xμ,x = −xApA
μ +

r

p

(
cp0

μ + bq0
μ
)
x0

x0,y = − p2

p2 + r2�

{[(
r

p
c + 1

)
qμ

0 +
r

p
apμ

0

]
xμ +

r

p2

[(
c − r

p
�

)
p,y + ap,x

]
x0

}

xμ,y = −xAqA
μ − r

p

(
ap0

μ + cq0
μ
)
x0.

(29)

Certainly, μ stands for 1, 2. Since the rotation coefficient matrices in (29) are so(3) (so(1, 2))
valued, compatibility conditions of the above linear system consist of (25), (26) and two
additional conditions

pμ
0

[
ap,x + cp,y − r,y� − 1

2
r�,y +

r

p

(
ar,x� + cr,y� +

1

2
ar�,x +

1

2
cr�,y + p,y�

)]

+ qμ
0

[
cp,x + bp,y + r,x� +

1

2
r�,x

+
r

p

(
br,y� + cr,x� +

1

2
br�,y +

1

2
cr�,x − p,x�

)]
= 0{

r

p2 + r2�

[
ap,x +

(
c − r

p
�

)
p,y

]}
,x +

{
r

p2 + r2�

[(
c +

r

p
�

)
p,x + bp,y

]}
,y = 0 (30)

that are satisfied due to (22). In addition in virtue of definitions (18) and (27) coefficients xA

are subjected to the constraint

(x0)2

(
1 +

r2

p2
�

)
+ ε[(x1)2 + (x2)2] = 0. (31)

Fortunately enough the quantity (x0)2
(
1 + r2

p2 �
)

+ ε[(x1)2 + (x2)2] is a first integral of the
linear system (29). So one can choose constants of integration so that (31) holds. Therefore,
we can formulate theorem 1.

Theorem 1 (Bäcklund transformations for normal fields of Bianchi surfaces). We assume
that a Bianchi surface is given explicitly, i.e. we know its position vector R

2 ⊃ D � (x, y) �→
�r(x, y) ∈ E

3(M3). Therefore, the following quantities of the surface can be found:

• its Gauss curvature K,
• a normal field �N to the surface in particular unit field normal to the surface �n0 and the

normal field �N = 1
4√|K| �n0, we assume

7



J. Phys. A: Math. Theor. 42 (2009) 404014 M Nieszporski and A Sym

V ol(�n0; �n0,x; �n0,y) 
= 0,

• functions a, b, and c from the Lelieuvre formulae (6),
• an orthonormal frame (�n0, �n1, �n2) where �n1 and �n2 fields are tangent to the surface,
• rotation coefficient pB

A, qB
A through formulae (24),

• function r given by r := �N · �N = 1√
K(ab−c2)

.

We have

(1) the system (22) is compatible and define the function p (constant of integration, say k, is
a spectral parameter in soliton terminology);

(2) there exist solutions (x0, x1, x2) of the system (29) that obey constraint (31);
(3) there exists the normal field of a new Bianchi surface (Bäcklund transform of the field �N )

�N ′ := p√
r

xA

x0
�nA; (32)

(4) the position vector of the new surface is given by

�r ′ = �r + �N × �N ′ + �c (33)

where �c is a constant vector.

Proof.

Ad (1). Direct calculations show that the system (22) treated as a system on the function p is
compatible due to the fact that the normal field �N satisfies equations (16) and (23) and does
define the function p.

Ad (2). The system (29) is compatible due to the fact that the normal field �N satisfies equa-
tions (16) and (23) and the function p is defined through (22) (we omit the tedious calculations).

Ad (3). The proof of this crucial point splits into two parts. First, we define θ = x0

√
r

p
and we

verify that �N ′ given by (32) is related to �N through a Moutard transformation (17). It follows
that �N ′ solves (16) with a function f ′ and (15) holds. Second, since we imposed constraint
(31), we get

r ′ := �N ′ · �N ′ = (c2 − ab)r

so K ′ satisfies (23).

Ad (4). We cross multiply formulae (17) by �N and by �N ′. From the four equations obtained
this way we can infer

(�r ′ − �r − �N × �N ′),x = 0 = (�r ′ − �r − �N × �N ′),y
and therefore (33) holds. �

We end this paper with two comments. First, we presented the transformation acting on
an arbitrary normal field of a Bianchi surface. To have an auto-Bäcklund transformation for
a partial differential equation, one has to confine oneself to the distinguished field �N . In this
case we receive the Bäcklund transformation for the system[

∂

∂x

(
A

∂

∂x
+ C

∂

∂y

)
+

∂

∂y

(
C

∂

∂x
+ B

∂

∂y

)]
�N = f �N (34)

[
∂

∂x

(
A

∂

∂x
+ C

∂

∂y

)
+

∂

∂y

(
C

∂

∂x
+ B

∂

∂y

)]
�N · �N = 0 (35)

8
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where A,B,C are given by (A,B,C) = 1√
|ab−c2| (a, b, c) so they obey constraint AB −C2 =

±1 and are conserved (up to irrelevant sign) under the transformation (due to (15)).

Corollary 1 (Bäcklund transformation for the system (34)–(35)). The transformation given
in theorem 1 applied to the distinguished normal vector field �N provides us with the auto-
Bäcklund transformation for the system (34)–(35) where �N and f are dependent variables of
the system of equations while A,B,C are given functions obeying constraint AB −C2 = ±1.

Second, in the elliptic Euclidean case starting from real-valued �N one obtains a pure
imaginary vector-valued function �N ′. To obtain the real solution of the system (4) one has to
apply once again the transformation to �N ′ or alternatively to make use of the permutability
theorem (nonlinear superposition principle) with which we end the paper.

Theorem 2 (Permutability theorem). Let a solution �N of the system of equations (34) and (35)
is given as well as two Bäcklund transforms �N (1) and �N (2) of �N that correspond to constants
of integration say k1 and k2 of the system (22). Applying the Bäcklund transformation to the
solutions �N (1) and �N (2) and taking constants of integration of (22) as k2 and k1 respectively
one can find solutions �N (12) and �N (21) such that �N (12) = �N (21) and are given by

�N (12) = ε

[
− �N +

2( �N (1) − �N (2)) · �N
( �N (1) − �N (2)) · ( �N (1) − �N (2))

( �N (1) − �N (2))

]
. (36)
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[3] Darboux G 1883 Sur les surfaces dont la courbure totale est constante Comptes Rendus 97 848, 892 and 946
[4] Bianchi L 1885 Sopra i sistemi tripli ortogonali di Weingarten Ann Matematica 13 177
[5] Enneper A 1868 Analytisch-geometrische untersuchungen V Nachr. konigl. Gesell. Wiss., Georg August. Univ.

Gottingen. 12 232–77
[6] Bianchi L 1890 Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali Ann. Mat. Pura Appl. 18

301
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